[SW Security] Finding Kernel Race Bugs through Fuzzing, IEEE Symposium on Security and Privacy (Oakland), May 2019

Finding Kernel Race Bugs through Fuzzing, Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta Shivakumar, Byoungyoung Lee, and Insik Shin, IEEE Symposium on Security and Privacy (Oakland) 2019

0
0

International Papers

Privacy Enhancing Computing HEPIC: Private Inference over Homomorphic Encryption with Client Intervention, ASPLOS 2026
Privacy Enhancing Computing Towards an Efficient Dataflow-flexible Accelerator by Finding Optimal Dataflows of DNNs, Future Generation Computer Systems, Sep 2025
Privacy Enhancing Computing An Accelerator for Low-computational Overhead Privacy-Preserving GNN Inference, HiPC 2025
Privacy Enhancing Computing SLOTHE: Lazy Approximation of Non-Arithmetic Neural Network Functions over Encrypted Data, USENIX Security 2025
Privacy Enhancing Computing Affinity-based Optimizations for TFHE on Processing-in-DRAM, ASPLOS 2025 Affinity-based Optimizations for TFHE on Processing-in-DRAM, ASPLOS 2025
Privacy Enhancing Computing LOHEN: Layer-wise Optimizations for Neural Network Inferences over Encrypted Data with high Performance or Accuracy, USENIX Security 2025
Privacy Enhancing Computing Affinity-based Optimizations of Homomorphic Encryption Operations on Processing-in-DRAM, DAC WIP 2024