[SW Security] OBFSCURO: A Commodity Obfuscation Engine on Intel SGX, Network and Distributed System Security Symposium (NDSS), Feb. 2019

OBFSCURO: A Commodity Obfuscation Engine on Intel SGX, Network and Distributed System Security Symposium (NDSS), Feb. 2019


Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, Byoungyoung Lee


본 논문은 Trusted Computing 환경인 SGX 위에서 이론적으로 안전한 프로그램 obfuscation 기술을 제안한다. 프로그램의 데이터플로우, 컨트롤플로우가 모두 Oblivious RAM을 통하여 동작하므로, 최근 알려진 각종 사이드체널 공격 (페이지폴트 기반, 캐쉬 기반, 브랜치 프리딕터 기반 등)에도 안전하다.

0
0

International Papers

Privacy Enhancing Computing HEPIC: Private Inference over Homomorphic Encryption with Client Intervention, ASPLOS 2026
Privacy Enhancing Computing Towards an Efficient Dataflow-flexible Accelerator by Finding Optimal Dataflows of DNNs, Future Generation Computer Systems, Sep 2025
Privacy Enhancing Computing An Accelerator for Low-computational Overhead Privacy-Preserving GNN Inference, HiPC 2025
Privacy Enhancing Computing SLOTHE: Lazy Approximation of Non-Arithmetic Neural Network Functions over Encrypted Data, USENIX Security 2025
Privacy Enhancing Computing Affinity-based Optimizations for TFHE on Processing-in-DRAM, ASPLOS 2025 Affinity-based Optimizations for TFHE on Processing-in-DRAM, ASPLOS 2025
Privacy Enhancing Computing LOHEN: Layer-wise Optimizations for Neural Network Inferences over Encrypted Data with high Performance or Accuracy, USENIX Security 2025
Privacy Enhancing Computing Affinity-based Optimizations of Homomorphic Encryption Operations on Processing-in-DRAM, DAC WIP 2024